Climate Change and Energy Efficiency: Let's Get Real

Ann Elsen

Elsen Energy Associates, LLC

&

October 29, 2008

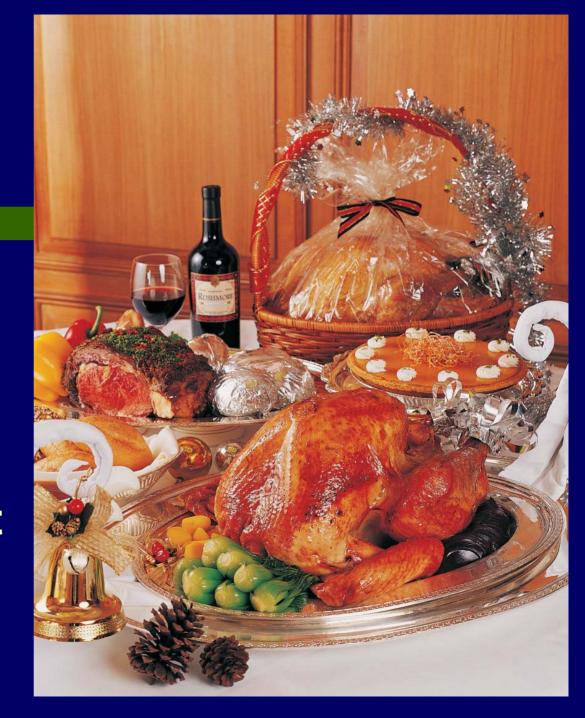
Rob Taylor
Washington Suburban Sanitary
Commission

Part 1 – Overview (Ann Elsen)

- Mitigating Climate Change
- Levels of Jurisdiction
- Really Big Bugs
- RGGI
- Funding Sources in MD
- Lead-in to inventories and actions -> Rob

Climate Change Mitigation

Impacts on Utilities, examples:


- Federal
 - carbon caps
 - national energy portfolio standards
 - investments in EE and AE
 - Shift to RE, nuclear, clean coal?
- State
 - RGGI
 - RPS
 - revenue from alternative compliance payments

Opportunities & Challenges

- Investment economic growth
- Efficiency improvements improved competitiveness
- New technologies improved operations and performance
- New demands/expectations from ratepayers
- New requirements placed on operations
- Tracking, M&V

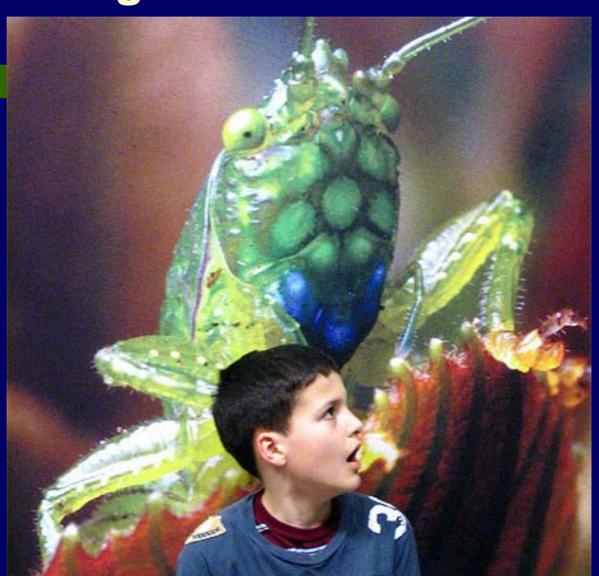
Role of Federal, State and Local Government

Utilities will see similar impacts

- Decisions at state and federal level may effect many aspects of operations
- Demand for new programs and ratepayer incentives (EmPower Maryland)
- Efficiency under the microscope
- Need to learn new methods of tracking, reporting, M&V
- Regulation of Carbon Credit and REC markets

Where the Windshield Encounters the Bug

Environmental Issues


Homeland Security

The Economy

Climate Change

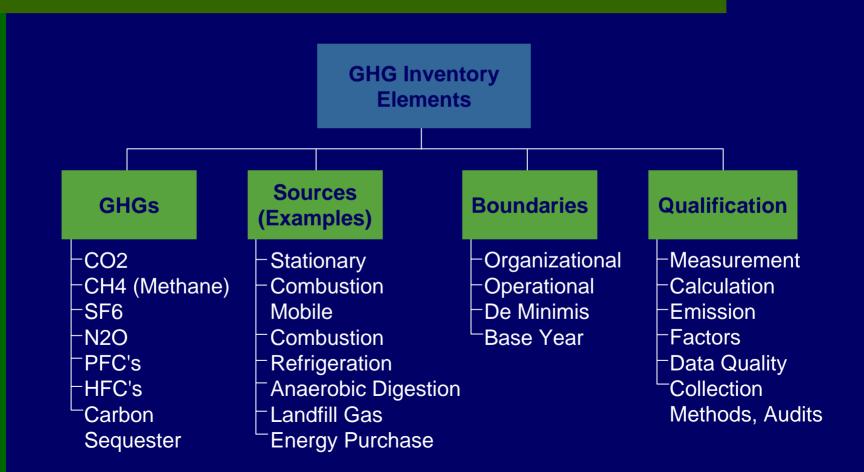
Regional Greenhouse Gas Initiative (RGGI)

- Cap & Trade (electricity sector)
- Allowances distributed via auction (mostly)
- Generators must meet cap via
 - Reducing emissions
 - Buying allowances
 - Approved offsets up to (3.3%)
 - Landfill methane capture and destruction
 - Reduction in emissions of sulfur hexafluoride (SF6) in the electric power sector
 - Sequestration of carbon due to afforestation
 - Reduction or avoidance of CO2 emissions from natural gas, oil, or propane end-use combustion due to end-use energy efficiency in the building sector
 - Avoided methane emissions from agricultural manure management operations

RGGI States

Strategic Energy Investment Fund

Split	%	Agency	Purpose		
40%	17	DHR	Electric Universal Service		
	23	PSC	residential rate relief		
60%	23	MEA	low income no-cost programs		
	10.5	MEA	education, climate change, RE		
	26.5	MEA	other stuff		


Part 2

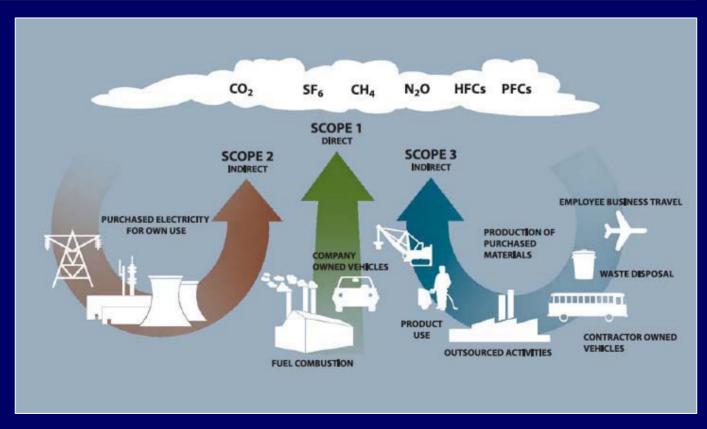
Rob Taylor
Washington Suburban
Sanitary Commission

Targets for Reducing Greenhouse Gas (GHG) Emissions

- Coupled with the Development of Climate Action Plans for Achieving the Reductions
- State of Maryland, Montgomery County & Prince George's County GHG emissions reduction targets (baseline 2005-2006):
 - Cap emissions levels by 2010
 - Reduce emissions by 10% every 5 years through 2050
- MD Reduction Targets:
 - 10% below 2006 levels by 2012
 - 25% below 2006 levels by 2020
 - 90% below 2006 levels by 2050

Developing a Verifiable Inventory

Emission Sources


Direct: Stationary/Mobile Combustion, Process

- Heaters/boilers/incinerators
- Vehicles/transportation
- Wastewater treatment and collection
- Water treatment
- Refrigerants (fugitive)

Indirect: Purchased Electricity/Steam/Hot &Chilled H2O

- Other Indirects: waste disposal, product use, recycling
- Contracted biosolids hauling and disposal
- Employee commuting

What This May Look Like

Greenhouse Gas Reduction Strategies

Examples of GHG Emissions Reductions

- Renewable energy purchase/generation
- Energy management/efficiency efforts
- Demand side management by electric utilities
- Green Buildings
- Carpooling/Vanpooling
- Telecommuting
- Afforestation

Greenhouse Gas Reductions-Specific Projects

Washington Suburban Sanitary Commission

Renewable Power- 10 years, 33%

Environmental Benefits (over 10 Years)					
CO₂ Reduction	83,700,000 lb/yr				
SO₂ Reduction	583,000 lb/yr				
NOx Reduction	188,000 lb/yr				

Phase IIB Energy Performance Project

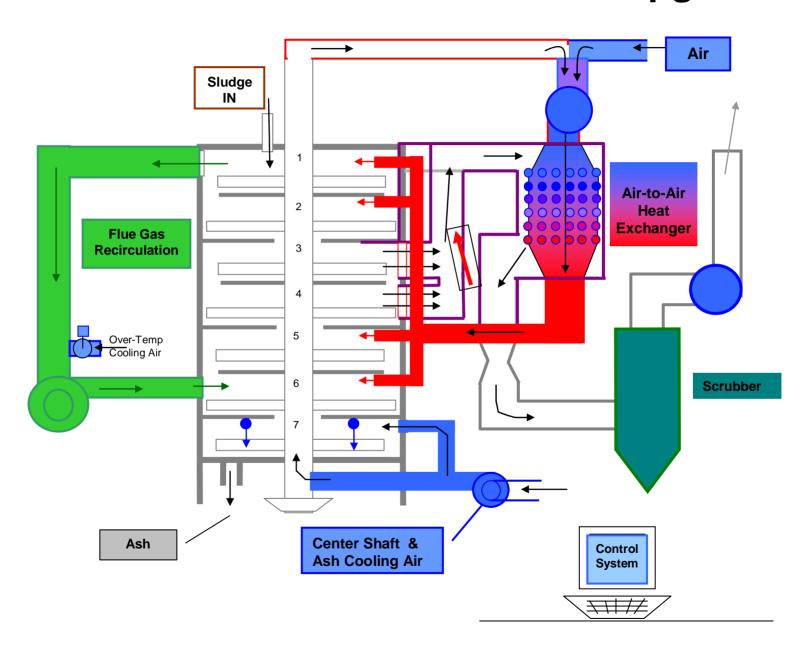
- Currently under Construction

			Est. \$ Savings	Est. Units	
Site	Scope	Capital Cost	per Yr.	Saved per Yr.	Units
Anacostia	New Pumps Sized	\$1,974,000	\$415,000	3,775,000	kWh
2 WWPS	for Average Dry				
	Weather Flow				
Western	Incinerator	\$5,663,000	\$450,000	300,000	therms
Branch	Upgrades				
WWTP					
Seneca	Engine-Generator	\$2,353,000	\$117,000	N/A	
WWTP	for Backup, Peak				
	Shaving				

\$ 9,990,000 \$ 982,000

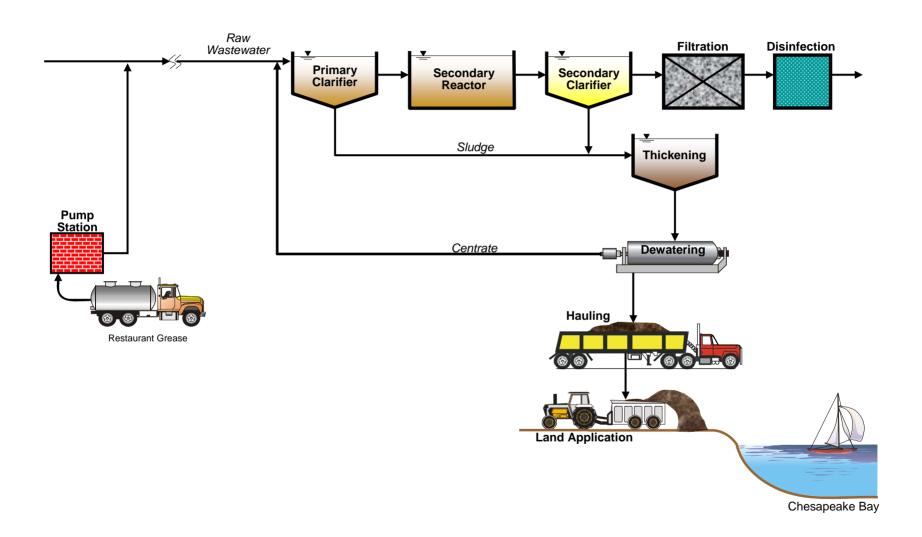
WSSC Anacostia II WWPS – Typical Existing Pumps

Anacostia II WWPS - New System

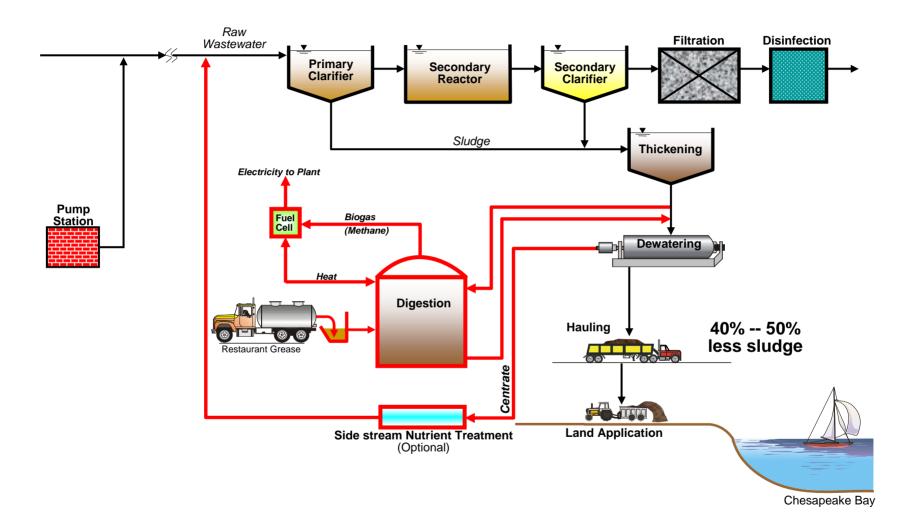

New System - VFD controls

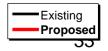
Western Branch WWTP- Existing Incinerator w/Afterburner

Western Branch Incinerator- Phase IIB Upgrades


New Renewable Projects

Washington Suburban Sanitary Commission


Anaerobic Digestion/CHP


- Add Anaerobic Digesters and Combined Heat & Power (CHP) to two existing 30 MGD wastewater treatment plants.
- Add restaurant grease trap waste to digesters to improve digester performance and alleviate sewer blockages.
- Estimated capital cost for two plants: \$25-\$30 million.
- Estimated annual savings \$2-\$3 million (two plants) including electricity, sludge hauling, GHG reductions/credits.

Wastewater Treatment Plant without Anaerobic Digestion

Wastewater Treatment Plant Modified for Anaerobic Digestion & Combined Heat & Power Generation

QUESTIONS?